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Abstract

Solute carrier (SLC) family transporters are crucial trans-
membrane proteins responsible for transporting various mol-
ecules, including amino acids, electrolytes, fatty acids, and 
nucleotides. To date, more than fifty SLC transporter sub-
families have been identified, many of which are linked to the 
progression of hepatic steatosis and fibrosis. These conditions 
are often caused by factors such as non-alcoholic fatty liver 
disease and non-alcoholic steatohepatitis, which are major 
contributors to the global liver disease burden. The activity 
of SLC members regulates the transport of substrates across 
biological membranes, playing key roles in lipid synthesis and 
metabolism, mitochondrial function, and ferroptosis. These 
processes, in turn, influence the function of hepatocytes, he-
patic stellate cells, and macrophages, thereby contributing to 
the development of hepatic steatosis and fibrosis. Addition-
ally, some SLC transporters are involved in drug transport, 
acting as critical regulators of drug-induced hepatic steato-
sis. Beyond substrate transport, certain SLC members also 
exhibit additional functions. Given the pivotal role of the SLC 
family in hepatic steatosis and fibrosis, this review aimed 
to summarize the molecular mechanisms through which SLC 
transporters influence these conditions.
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Introduction
Hepatic steatosis can result from various factors, including 
metabolic processes, pharmacological agents, alcohol con-
sumption, and other toxins. Among these, metabolically in-
duced non-alcoholic fatty liver disease (NAFLD) is the most 
common type, with a global prevalence of 30%, a figure 
that continues to rise, indicating a significant global disease 
burden.1,2 NAFLD is characterized by hepatic steatosis, and 

while its underlying pathogenesis remains unclear, the “mul-
tiple-hit” hypothesis is currently the most comprehensive 
and widely accepted model. This model attributes the devel-
opment of NAFLD to several factors, including disruptions in 
lipid metabolism, insulin resistance (IR), adipose tissue dys-
function, dietary composition, alterations in the gut micro-
biota, as well as genetic and epigenetic influences.3 In addi-
tion, abnormal concentrations of certain metal ions—such as 
iron, copper, and zinc—in plasma and cells may cause cellular 
dysfunction, further contributing to NAFLD pathogenesis.4–6 
Hepatic fibrosis, the subsequent stage following hepatic stea-
tosis, is a physiological metabolic response to hepatocellular 
injury. This process involves mechanisms such as the activa-
tion of hepatic stellate cells (HSCs), epithelial-mesenchymal 
transition (EMT) of hepatocytes, macrophage polarization, 
and increased secretion of inflammatory factors.7,8 As he-
patic fibrosis progresses, liver function deteriorates, poten-
tially culminating in cirrhosis. This advanced stage is as-
sociated with an elevated risk of hepatocellular carcinoma 
and poor patient prognosis.9,10 A deeper understanding of 
the mechanisms underlying steatosis and fibrosis, alongside 
the development of effective pharmacological interventions, 
could significantly improve the quality of life and prognosis 
for patients with these chronic liver diseases.

The solute carrier (SLC) family is estimated to include up 
to 456 members.11 These transporters are widely expressed 
across biological membranes, including cytoplasmic and mi-
tochondrial membranes in various organs. SLC transport-
ers facilitate the transport of a broad range of molecules, 
including amino acids, electrolytes, nucleotides, saccharides, 
and other substances.12 They play crucial roles in numerous 
physiological and pathophysiological processes, significantly 
contributing to the development of renal diseases, neurode-
generative disorders, cancer, and metabolic conditions. Mu-
tations in these transporters are also linked to various Men-
delian diseases.13 Several SLC members are expressed in the 
liver, with some influencing liver pathophysiology. Multidrug 
transporter proteins, an important subgroup of the SLC fam-
ily, are particularly regulated by liver function, thereby af-
fecting drug metabolism and efficacy. Additionally, certain 
SLC members are key mediators of drug-induced liver in-
jury caused by agents such as statins and anti-tuberculosis 
drugs.14–16 The SLC family also plays a critical role in he-
patic steatosis and fibrosis by modulating the functions of 
hepatocytes and HSCs through various mechanisms. Nota-
bly, several SLC-targeted drugs have been tested in clinical 
trials, demonstrating significant therapeutic effects in treat-
ing NAFLD.17,18
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This review provides a comprehensive overview of the 
latest developments regarding the role of the SLC family in 
hepatic steatosis and fibrosis. In particular, it focuses on elu-
cidating the mechanisms of action of various SLC molecules. 
Unlike previous studies, we conduct a systematic review of 
all known SLC molecules potentially involved in these pro-
cesses (summarized in Tables 1 and 2),19–156 emphasizing 
their clinical applications or potential. This approach offers 
new insights into how additional SLC members contribute to 
liver disease development and highlights their potential as 
drug targets for NAFLD.

SLC1/2
SLC1 is a type of glutamate transporter protein that helps 
maintain a gradient in the concentration of glutamate across 
the cell membrane.157 SLC1A4 and SLC1A5 are responsible 
for transporting neutral amino acids into the cell. The ratio 
of plasma glutamate to glutamine concentrations is elevated 
and correlates with the degree of hepatic fibrosis in patients 
with NAFLD. These elevated glutamate levels primarily re-
sult from the catabolism of glutamine. In methionine- and 
choline-deficient-induced NASH mice, the expression of 
SLC1A5 is increased, and HSCs exhibit enhanced glutamine 
uptake. Inhibition of glutamine uptake or catabolism shifts 
activated HSCs to a more quiescent state, thereby alleviat-
ing fibrosis. Consequently, inhibiting SLC1A5 may reduce 
glutamine uptake and potentially slow the progression of 
NAFLD to NASH.19 However, bioinformatics analysis reveals 
that the expression of SLC1A4 is decreased in NAFLD pa-
tients and may be associated with M1 macrophage activation 
and neutrophil infiltration. This suggests that SLC1A4 could 
contribute to fibrosis through mechanisms independent of its 
transporter function.20

The SLC2 family encodes glucose-fructose transport pro-
teins. SLC2 family members are expressed on hepatocyte 
membranes, with SLC2A2 (GLUT2) showing the highest ex-
pression. Reduced activity of SLC2A2 affects glucose trans-
port to the liver and promotes IR in response to a high-fat-
sugar diet. Elevated plasma insulin levels stimulate de novo 
lipogenesis (DNL), further exacerbating hepatic steatosis.158 
The reduction in GLUT2 activity may result from either down-
regulation of its expression or inhibition of its translocation, 
depending on its cytomembrane expression levels.159 Vari-
ous signaling molecules, including sterol O-acyltransferase 
2, protease-activated receptor 2, transmembrane member 
16A, low-density lipoprotein receptor-related protein-1, and 
β-hydroxy-β-methylbutyrate, influence hepatic lipid accumu-
lation by regulating GLUT2 activity.21–25 A high-fat diet (HFD) 
reduces cytomembrane GLUT2 levels in NAFLD mice. Inter-
estingly, one study identified elevated hepatic GLUT2 expres-
sion in mice with type 2 diabetes and high-fructose-induced 
diabetes with NAFLD.26–28 In these mice, increased GLUT2 
expression promotes glucose translocation into hepatocytes, 
indirectly increasing precursors for lipid synthesis and pro-
moting hepatic steatosis. The observed differences in GLUT2 
expression may result from varying dietary conditions, which 
induce different patterns of hepatic steatosis. This is con-
sistent with findings that mice with high-fructose-induced 
NAFLD exhibit greater insulin sensitivity compared to those 
with HFD-induced NAFLD.29 Nevertheless, aberrant GLUT2 
activity contributes to hepatic steatosis in both dietary pat-
terns. Reduced GLUT2 expression, along with increased 
GLUT4 expression, has been observed in cirrhotic patients 
and senescent hepatocytes, leading to selective IR and poor 
prognosis. It has been postulated that IR resulting from a de-
crease in GLUT2 may indirectly impact fibrosis by promoting 

hepatocyte senescence, although this hypothesis requires 
further verification.30

Unlike GLUT2, SLC2A4/GLUT4 is predominantly intracel-
lular in the unstimulated state and rapidly translocates to the 
cytomembrane in response to glucose uptake stimuli, such 
as insulin and ischemia-reperfusion. This represents the first 
reported instance of GLUT protein activation under stressed 
conditions.160 IR resulting from GLUT4 inactivation is caused 
by oxidative stress in adipose tissue, induced by short-term 
nutrient excess. This mechanism primarily explains GLUT4’s 
influence on hepatic steatosis. Additionally, GLUT4 transloca-
tion to the cell membrane can be mediated by the IGF-1R/
IRS1/PI3K/Akt or AMPKα1/PGC-1α signaling pathways.31–33 
GLUT4 expression is more pronounced in male obese spon-
taneously hypertensive rats compared to females, reflect-
ing sex-based differences in the pathogenesis of hepatic 
steatosis.34 Activated AMPK can reduce GLUT4 expression in 
HSCs, thereby decreasing glucose availability for glycolysis, 
inhibiting HSC activation, and alleviating hepatic fibrosis.35 
SLC2A1/GLUT1 is a critical transporter for glucose uptake in 
the brain, induced by hypoxia, and associated with increased 
glycolysis during carcinogenesis. GLUT1 expression is differ-
entially regulated in hepatocytes and HSCs during liver in-
jury, with each cell type playing distinct roles. Hepatic GLUT1 
expression is reduced in NAFLD patients, and in vitro knock-
down of GLUT1 on hepatocytes increases oxidative stress 
and lipid accumulation.36 Notably, increased hepatic GLUT1 
expression is observed in hepatic fibrosis mice, primarily in 
the hepatic sinusoidal region. Mechanistically, activated HSCs 
secrete GLUT1-containing exosomes in response to hypoxia-
inducible factor (HIF) 1, which are subsequently taken up 
by unactivated HSCs, promoting glucose uptake and glyco-
lysis and facilitating HSC activation.37 Increased GLUT1 in 
HSCs can also be induced by TGF-β1 through the Smad, p38 
MAPK, and PI3K/AKT pathways.161 SLC2A5/GLUT5 is widely 
expressed in intestinal epithelial cells, where it facilitates glu-
cose and fructose absorption. Its intestinal expression is as-
sociated with obesity and IR.162 Recent studies have linked 
high GLUT5 expression in the intestine to disease progres-
sion in NAFLD patients.38 It is hypothesized that specific in-
hibition of intestinal GLUT5 may alleviate hepatic steatosis 
by reducing sugar absorption. SLC2A8/GLUT8 is expressed 
in hepatocytes and intestinal cells and plays a crucial role 
in intrahepatic fructose transport. Increased translocation of 
GLUT8 to the cytomembrane during acute fructose overcon-
sumption is mediated by its transient dissociation from trans-
membrane 4 L six family member 5.39 High fructose levels 
induce endoplasmic reticulum stress and oxidative stress in 
hepatocytes, promoting DNL, lipid oxidative catabolism, and 
HSC activity. GLUT8 deletion alleviates hepatic steatosis and 
fibrosis by counteracting these effects.29,40 SLC2A9/GLUT9 is 
a urate transporter protein, and its polymorphisms are asso-
ciated with NAFLD. Liver-specific knockdown of GLUT9 ame-
liorates HFD-induced hepatic steatosis in mice by decreasing 
intrahepatic uric acid and inhibiting lipolysis gene expres-
sion.41 However, a Mendelian randomization study combined 
with cohort analysis shows that elevated plasma urate con-
centration is not causally associated with NAFLD.163 Since 
GLUT9 is widely distributed in the liver, kidney, and intestine, 
its liver-specific mediation of urate transfer may significantly 
contribute to intrahepatic urate levels.

SLC5/6
Sodium-glucose transporters (SGLTs) encoded by the SLC5 
family play a crucial role in metabolic diseases, particularly 
SLC5A2/SGLT2. SGLT2 has emerged as an effective thera-
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peutic target for diabetes, with well-documented efficacy in 
reversing hepatic steatosis and fibrosis.164 A recent five-year 
follow-up study demonstrated that SGLT2 inhibitors signifi-
cantly improved hepatic steatosis in patients with diabe-
tes and NAFLD.42 Mechanistically, SGLT2 inhibitors improve 
hepatic steatosis through multiple pathways, including the 
reduction of circulating inflammatory and oxidative stress 
conditions.43 For example, dapagliflozin inhibits liver recep-
tor alpha-mediated bile acid (BA) synthesis and DNL, amelio-
rates BA disruption-induced intestinal dysbiosis, and reduces 
intestinal lipid absorption.165 Lugliflozin has been shown to 
reduce body weight, hepatic gluconeogenesis, and blood glu-
cose levels, primarily improving IR and reducing lipid syn-
thesis precursors.44 Similarly, a prospective study observed 
an increased risk of hepatic fibrosis in diabetic patients, 
which was significantly mitigated by SGLT2 inhibitors.166 
Specifically, SGLT2 inhibitors alleviate fibrosis by improv-
ing blood sugar and lipid levels, enhancing the physiologi-
cal functions of hepatocytes and HSCs, modulating intestinal 
flora, and facilitating vascular remodeling.45,46 Additionally, 
SGLT2 inhibitors downregulate miRNA-34a-5p expression 
in HSCs, which increases Gremlin 2-mediated inactivation 
of TGF-β, resulting in impaired HSC activation. The Sirt1/
AMPK/PGC1α/FoxO1 axis is also involved in the inactivation 
of HSCs by SGLT2 inhibitors.47,48 Additionally, SGLT2 inhibi-
tors reduce glucose surplus-induced O-GlcNAcylation, which 
decreases the expression of inflammatory and fibrosis-relat-
ed genes and activates AMPK-TFEB-induced autophagic flux, 
preventing autophagy dysfunction that leads to abnormal 
lipid degradation and increased inflammatory cytokines.49 
Empagliflozin (EMPA) treatment has been shown to attenu-
ate key fibrotic pathways, including TGF-β/TGF-βRI/Smad2 
and PDGFR-β in HSCs, accompanied by decreased expres-
sion of type I collagen (Col 1A1) and extracellular matrix. 
EMPA treatment also attenuates the VEGF-A/VEGFR-2/Shb 
pathway, which induces angiogenesis in hepatic endothelial 
cells, improving vascular remodeling and portal hyperten-
sion. Notably, no toxic effects of EMPA on the kidneys have 
been observed.50 Given the mitigating effect of SGLT2 on 
hepatic fibrosis and its improvement of sodium retention and 
solution volume redistribution in vivo, this represents a novel 
approach to cirrhosis treatment. Two additional SLC5 family 
members have been linked to hepatic steatosis and fibrosis. 
SLC5A1, which encodes SGLT1, is predominantly expressed 
in the intestinal epithelium and mediates glucose uptake. 
SGLT1 levels are higher in patients with NAFLD compared 
to healthy controls and correlate with the degree of hepatic 
fibrosis.167 Consistently, SGLT1 inhibition ameliorates NAFLD 
by reducing glucose absorption and downregulating genes 
related to inflammation and hepatic fibrosis.51,52 SLC5A5, en-
coding SGLT5, is a fructose-transporting protein expressed in 
the kidneys that mediates fructose reabsorption. However, a 
high-fructose diet-induced hepatic steatosis is exacerbated in 
SGLT5-deficient mice, possibly due to increased translocation 
of GLUT8.53

The SLC6 family mediates the transport of various neu-
rotransmitters.168 The serotonin transporter (SERT) protein, 
encoded by SLC6A4, is responsible for serotonin transport. In 
fructose-fed mice, a decrease in intestinal SERT protein leads 
to extracellular serotonin aggregation, resulting in transmu-
ral transport, decreased occludin expression, and increased 
intestinal permeability. This is followed by elevated serum 
endotoxin levels, ultimately triggering hepatic inflammation 
exacerbated by lipid accumulation. Similar effects are ob-
served in glucose-fed and Western diet-fed mice following 
SERT knockout.54,55 Additional mechanisms through which 
SERT exerts its effects include intestinal dysbiosis, activa-

tion of the c-Jun N-terminal kinase (JNK) pathway, IR, and 
increased recruitment of hepatic leukocytes.56–58 However, 
one study shows that hepatic SERT expression is elevated in 
HFD-induced NASH mice, increasing serotonin uptake. Sero-
tonin catabolism and oxidative stress mediate mitochondrial 
damage, ultimately leading to hepatocyte injury. However, 
SERT levels are not elevated in human samples.59 In conclu-
sion, the expression levels of SERT in the liver and intestine 
may vary during the progression of NAFLD. In systemic SERT 
knockout mice, intestinal SERT effects may outweigh hepatic 
SERT effects. Nonetheless, aberrant expression of SERT in 
both the intestine and liver contributes to lipid accumula-
tion and inflammation in the liver. SLC6A14, a Na/Cl-coupled 
transporter for neutral/cationic amino acids, is expressed 
in the intestine. HFD-induced mice that undergo SLC6A14 
knockout exhibit increased food intake, exacerbated hepat-
ic steatosis with altered plasma amino acid profiles, and a 
greater prevalence of these effects in males, indicating a po-
tential involvement of SLC6A14 in hepatic steatosis.60

SLC7/9/10/13/15
SLC7 mediated the transport of various amino acids. The 
cystine-glutamate reverse transporter (xCT), encoded by 
SLC7A11, is a cystine-glutamate antiporter that mediates 
the import of cysteine and export of glutamate. This is fol-
lowed by the generation of glutathione and activation of glu-
tathione peroxidase 4, which plays a critical role in protect-
ing cells from ferroptosis.169 Alterations in iron metabolism 
and lipid peroxidation during ferroptosis may be pathophysi-
ologically related to lipid accumulation in NAFLD. Liraglutide 
and RBM34 have been shown to influence hepatic lipid ac-
cumulation by regulating the ferroptosis process mediated by 
SLC7A11.61,62 Additionally, epigenetic regulation of SLC7A11 
may impact hepatic steatosis. Previous studies have demon-
strated that DNA methylation of SLC7A11 is associated with 
a reduced risk of hepatic steatosis in NAFLD patients, po-
tentially through the regulation of lipid-associated genes.63 
Consistently, methylation of SLC7A11 can also promote fer-
roptosis and exacerbate the development of NAFLD when 
regulated by obesity-related protein.64 SLC7A11 is also a key 
component in various pathways by which drugs and proteins 
regulate ferroptosis in HSCs to achieve antifibrosis. These 
pathways include the sorafenib-induced HIF-1α/SLC7A11 
pathway, wogonoside-induced SOCS1/P53/SLC7A11 path-
way, ginsenoside Rh2-induced IRF1/SLC7A11 pathway, 
ginsenoside Rb1-induced Beclin1/SLC7A11 pathway, and 
tripartite motif 26-induced ubiquitination of SLC7A11.65–69 
Interestingly, SLC7A11 also exerts an inhibitory effect on he-
patic fibrosis independent of ferroptosis. Increased SLC7A11 
expression has been observed in liver samples from NASH 
patients. Mechanistically, lipid accumulation-induced activa-
tion of the JNK-c-Jun pathway increases SLC7A11 expression 
in hepatocytes. SLC7A11 reduces reactive oxygen species 
(ROS) levels and enhances α-ketoglutarate/prolyl hydroxy-
lase activity, activating the AMPK-mitochondrial autophagy 
pathway. This ultimately leads to a reduction in NOD-, LRR-, 
and pyrin domain-containing protein 3 inflammasome-me-
diated interleukin (IL) 1-beta production, preventing mye-
loid cell recruitment and HSC activation.70 In summary, an 
SLC7A11 inhibitor seems to be a potential therapeutic target 
for alleviating fibrosis progression. However, it is crucial to 
consider that SLC7A11 expression in HSCs is significantly 
higher than in hepatocytes under acute liver injury condi-
tions, making HSCs more sensitive to these inhibitors. In the 
context of chronic liver injury, prolonged TGF-β stimulation 
induces EMT in hepatocytes, enhancing their sensitivity to 
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SLC7A11. Administering an SLC7A11 inhibitor at this stage 
may not only worsen liver injury but also reduce the efficacy 
of the inhibitor in alleviating hepatic fibrosis.170 Moreover, 
inhibition of the AGER1/SIRT4/SLC7A11 pathway in hepat-
ocytes induces ferroptosis, promoting hepatocyte EMT.71 
Therefore, designing effective SLC7A11 inhibitors to alleviate 
hepatic fibrosis should prioritize specificity for HSCs to mini-
mize hepatocyte damage. Other members of the SLC7 fam-
ily also influence hepatic steatosis. Knockdown of SLC7A3 in 
mice or human hepatocytes reduces arginine transport, lead-
ing to decreased NO production and subsequent 3′,5′-Cyclic 
guanosine monophosphate synthesis. This impairs fatty acid 
(FA) oxidation, which is activated by AMPK-PPARα signal-
ing, ultimately leading to lipid accumulation under fasting 
or glucose-starvation conditions.171 Additionally, deletion of 
SLC7A8, a glutamine transporter, prevents hepatic steatosis, 
potentially due to improved glucose tolerance, reduced lipid 
accumulation, and promoted weight loss.72

Members of the SLC10 family are primarily involved in BA 
transport. Among them, SLC10A2, also known as the api-
cal sodium-dependent bile acid transporter (ASBT), has been 
most extensively studied in liver diseases. ASBT is responsi-
ble for BA reabsorption in the ileum, and its inhibition pre-
vents lipid accumulation by reducing plasma BA, altering BA 
properties, and enhancing insulin sensitivity.73 Specifically, 
the inhibition of ASBT reduces circulating BA, leading to a 
decrease in ileum receptor farnesoid X receptor-activated fi-
broblast growth factor (FGF) 15/19. As a result, hepatic ERK 
and JNK signaling pathways are activated, upregulating cho-
lesterol 7α-hydroxylase activity and enhancing hepatic cho-
lesterol catabolism. A similar mechanism has been observed 
in alcohol-induced steatohepatitis.18,74 The degree of hydro-
phobicity of BAs is also higher after ASBT inhibition, interfer-
ing with their ability to efficiently mediate lipid uptake, partic-
ularly of saturated fatty acids. This suggests that appropriate 
dietary FA composition may contribute to the role of ASBT 
inhibitors.75 Volixibat, an ASBT inhibitor, has been evaluated 
in clinical trials for its potential to alleviate NASH, but the ef-
ficacy was unfortunately suboptimal.172 One possible expla-
nation is that, while ASBT inhibitors reduce intrahepatic cho-
lesterol levels, ASBT-mediated cholesterol catabolism leads 
to an increase in intrahepatic BAs. A recent study using an 
ASBT inhibitor in combination with FGF15 supplementation 
in NASH mice found that the combination was more effec-
tive than either treatment alone. FGF15 reduced intrahepatic 
BA accumulation and inhibited the activation of cholesterol 
7α-hydroxylase by ASBT, while maintaining its role in inhib-
iting intestinal BA reabsorption, thus ensuring cholesterol 
and BA homeostasis.173 Similarly, the sodium taurocholate 
co-transporting polypeptide (NTCP), encoded by SLC10A1, 
is also involved in the uptake and homeostatic regulation of 
BAs, although it is predominantly expressed in the liver. In 
NTCP-deficient livers, reduced BA uptake from plasma led to 
elevated plasma BA levels without causing liver injury. This 
was accompanied by reduced intestinal fat absorption and 
increased non-coupled respiration in brown adipose tissue 
(BAT), which attenuated hepatic steatosis through weight 
loss.76 NTCP expression has also been associated with HBV-
associated hepatic fibrosis and NASH, and overexpression of 
NTCP in HSCs promoted BA uptake in the NASH environ-
ment, which was associated with HSC activation.77,78

Some members of the SLC9, SLC13, and SLC15 families 
have also been reported to be associated with hepatic stea-
tosis. SLC9A1, also known as Na(+)/H(+) exchanger 1 (NHE1), 
is an electrically neutral Na/H exchanger. Chronic exposure to 
an HFD upregulated hepatic NHE1 expression, whereas NHE1 
deficiency reduced DNL and HSC activation and increased 

insulin sensitivity.79 SLC13A5, the mammalian homolog of 
INDY (mIndy), is a citrate transporter protein. The increase 
in hepatic mIndy expression in NAFLD patients was mediated 
by the IL-6-signal transducer and activator of transcription 
3 pathway, promoting increased hepatic lipogenesis.80 Fur-
thermore, liver-specific knockdown of mIndy prevented IR 
and reduced plasma and liver triacylglycerol (TAG) levels, 
potentially due to increased plasma β-hydroxybutyrate and 
AMPK activation.81–83 SLC15A1 encodes peptide transporter 
1 (PEPT1), a high-capacity, low-affinity peptide transporter 
responsible for the uptake of dipeptides and tripeptides in the 
intestine, kidney, and liver. PEPT1 knockdown was associated 
with weight loss and amelioration of hepatic steatosis, poten-
tially due to a reduction in systemic IL-6 levels, leading to a 
lack of mucosal structures and decreased intestinal energy 
absorption.84 Additionally, hepatocyte-expressed PEPT1 may 
facilitate the entry of specific peptides, such as fish-arginine-
derived peptides, to alleviate hepatic steatosis.174

SLC16/17/19/22/23
SLC16 encodes the monocarboxylic transporter (MCT), which 
plays a critical role in the transport of essential cellular nu-
trients, as well as in cell metabolism and acid-base balance. 
SLC16A1/MCT1 mediates the influx and efflux of lactate.175 
In healthy livers, intracellular lactate content was found to be 
proportional to MCT1 expression levels. However, in chronic 
liver disease, a post-transcriptional modification-associated 
decrease in MCT1 content correlated with the severity of liver 
disease, accompanied by intrahepatic lactate accumulation, 
particularly in alcoholic liver disease. This suggests that post-
transcriptional modification of MCT1 may be involved in the 
pathological processes of liver disease development.176 In 
NASH mice, knockdown of MCT1 in HSCs reduced collagen-1 
expression and attenuated hepatic fibrosis, while knockdown 
in hepatocytes had the opposite effect.85 These findings sug-
gest that reduced MCT1 expression in hepatocytes may sig-
nificantly contribute to the accelerated progression of liver 
disease. The role of MCT1 in hepatic steatosis remains in-
conclusive. Liver-specific MCT1 deletion resulted in lactate 
accumulation in hepatocytes, leading to enhanced polyubiq-
uitination-mediated degradation of peroxisome proliferator-
activated receptor alpha (PPARα), resulting in decreased 
expression of lipid oxidation-related genes and exacerbation 
of HFD-induced hepatic steatosis.86 However, another study 
showed that reduced lactate uptake in hepatocytes from par-
tial MCT1 knockout mice prevented high lactate dehydroge-
nase B expression under HFD conditions. This reduction in 
lactate led to decreased pyruvate levels, affecting ATP pro-
duction, increasing the AMP/ATP ratio, and activating AMPK 
to alleviate hepatic steatosis. Conversely, upregulation of 
MCT1 expression had the opposite effect.87–89 The present 
study indicated that abnormalities in MCT1-mediated lac-
tate influx and efflux may contribute to hepatic steatosis, 
though the specific regulatory mechanisms underlying the 
role of MCT1 in lactate transport remain to be elucidated. 
SLC16A11 and SLC16A13, members of the same family of 
monocarboxylic transporters as MCT1, have also been linked 
to susceptibility to type 2 diabetes mellitus. Hepatic expres-
sion of SLC16A11 was higher in HFD-fed mice, and its knock-
down improved IR and reduced TAG accumulation in both 
serum and liver.90 Similarly, SLC16A13 knockdown attenu-
ated hepatic diacylglycerol-PKCε-mediated IR in the setting 
of HFD and decreased intracellular lactate availability led to 
increased AMPK activation and reduced hepatic lipid accu-
mulation.91

The SLC22 family is distributed in tissues such as the kid-



Journal of Clinical and Translational Hepatology 2024 11

Zhang C. et al: SLC transporters in liver steatosis and fibrosis

ney and liver.177 The proteins organic cation transporter 1 
(OCTN1) and organic cation transporter 2 (OCTN2), encoded 
by SLC22A4 and SLC22A5, belong to the same group of car-
nitine transporter proteins and play a critical role in cellular 
metabolism. Carnitine improves mitochondrial dysfunction, 
reduces IR, and thus alleviates NAFLD.178 Meta-analysis 
showed that carnitine supplementation improved liver func-
tion and lipid accumulation in patients with NAFLD.92 Carni-
tine deficiency, resulting from the downregulation of OCTN1 
and OCTN2, may reduce the transfer of long-chain fatty acids 
from the cytoplasm to the mitochondria, limiting their oxi-
dation. During the progression of liver disease, OCTN1 and 
OCTN2 appear to serve as binding sites for various drugs 
that influence hepatic steatosis, such as Cynara cardunculus 
extract, clozapine, and olanzapine.93–95 OCTN1 was upregu-
lated in activated HSCs, resulting in increased delivery of its 
substrate, the antioxidant ergothioneine, which protected 
against hepatic fibrosis.96 Other members of the SLC22 fam-
ily have also been implicated in hepatic steatosis and fibro-
sis. SLC22A12/Urate transporter 1, a uric acid transporter, is 
predominantly expressed in the epithelial cells of the renal 
proximal tubules, where it is responsible for the reabsorption 
of uric acid. Elevated blood urate promotes oxidative stress 
and increases the production of pro-inflammatory cytokines, 
leading to IR and hepatocellular lipid accumulation.179,180 
Consistent with this, selective inhibitors of urate transporter 
1 reduced inflammatory factors like chemokine ligand 2 and 
tumor necrosis factor α, as well as intracellular ROS pro-
duction in hepatocytes, ameliorating hepatic steatosis and 
improving IR by upregulating uncoupling protein (UCP) 1 to 
induce the rebrowning of BAT.97 SLC22A18 was thought to be 
an organic cation-transporting protein, although its physio-
logical substrates remain unclear. Furthermore, studies have 
demonstrated that overexpression of SLC22A18 promoted 
systemic lipid accumulation in mice, including in the liver.98,99 
SLC22A3/Organic cation transporter 3 is an organic cation 
transporter protein, and deletion of hepatocyte organic cat-
ion transporter 3 led to the upregulation of TGF-β, resulting 
in fibrosis progression.100

The roles of SLC17, SLC19, and SLC23 in the pathogenesis 
of hepatic steatosis and fibrosis remain incompletely under-
stood. SLC17A9 encodes the vesicular nucleotide transport-
er (VNUT) protein responsible for ATP vesicular storage.181 
VNUT-mediated vesicular ATP release promoted very low-
density lipoprotein secretion in an autocrine or paracrine 
manner via metabotropic pyrimidine and purine nucleotide 
receptors 13 receptor purinergic signaling. VNUT deficiency 
protected against the development of inflammation and fi-
brosis in the context of a HFD despite TAG accumulation in 
the liver. Mechanistically, VNUT knockdown inhibited intercel-
lular purinergic signaling, which reduced the progression of 
liver inflammation and fibrosis, accompanied by a decrease 
in the expression of lipolytic genes and an increase in the 
expression of lipolysis genes.101 Another study demonstrated 
that inhibition of glucose-induced ATP release from VNUT 
vesicles led to decreased intracellular TAG content and se-
cretion in hepatocytes, along with reduced hepatic inflam-
mation and fibrosis,102 confirming the anti-inflammatory 
effect of VNUT. However, whether this affected intrahepatic 
lipid accumulation remains to be further explored. SLC19A1 
is responsible for folate transport, and low blood folate levels 
are associated with the progression of NAFLD. A deficiency 
in SLC19A1 expression in hepatocytes reduced intracellular 
folate levels, affecting the regulation of key lipid metabolism 
genes, such as fatty acid synthase and X-box binding protein 
1, leading to the accumulation of lipid droplets in hepato-
cytes.103 SLC23A2 is a vitamin C transporter protein. Human 

HSCs express only one vitamin C transporter, SLC23A2. This 
protein is elevated in cirrhotic livers and mediates vitamin C 
influx, assisting hydroxylases in promoting collagen 1 release 
by HSCs.104

SLC25
Members of the SLC25 family transport a variety of com-
pounds across the inner mitochondrial membrane, bridging 
the mitochondrial matrix and cytosol.182 The most exten-
sively researched family within this group is the UCP fam-
ily. SLC25A7/UCP1 is a mitochondrial uncoupling protein 
expressed in BAT and associated with non-shivering ther-
mogenesis. The beneficial effects on hepatic steatosis were 
primarily achieved through weight loss. Various drugs affect-
ed UCP1 expression through different pathways to achieve 
weight loss. For example, magnolol and Paeonia lactiflora 
root increased UCP1 expression through the activation of 
the PPARγ signaling pathway and AMPK, respectively.105,106 
Loureirin B treatment increased the proportion of ω3 polyun-
saturated fatty acids in BAT and white adipose tissue (WAT), 
which activated the key lipid sensor G protein-coupled re-
ceptor 120, in turn upregulating UCP1.107 In addition, UCP1 
expression was involved in the brain-nerve-lipid axis. Mod-
erate alcohol consumption stimulated hypothalamic neural 
circuits and sympathetic nerves innervating BAT, which sig-
nificantly increased UCP1 expression and activity in BAT. This 
may serve as a potential mechanism for metabolic improve-
ment through moderate alcohol consumption.108 Alterations 
in UCP1 expression in the liver and BAT were also associated 
with the fibrotic process. The persistent high-fat environ-
ment in advanced NAFLD downregulated UCP1 in NK cells via 
the PPARγ/ATF2 axis, increasing fatty acid oxidation (FAO) 
and exacerbating irreversible mitochondrial damage. This, in 
turn, promoted necrotic apoptosis in NK cells and aggravated 
fibrosis.109 UCP1 also mediated the uptake of succinate from 
the circulation by BAT and WAT, thereby reducing extracel-
lular succinate, which activated succinate receptor 1 in HSCs 
and macrophages to produce pro-inflammatory effects.110 
The mitochondrial function of SLC25A8/UCP2 is not yet fully 
understood. As an uncoupling protein homologue of UCP1, 
it reduced mitochondrial ATP and ROS production, as well 
as thermogenesis.183 Polymorphisms in UCP2 and increased 
hepatic UCP2 expression were associated with a reduced risk 
of NASH.184,185 Various drugs could enhance thermogenesis, 
improve fatty acid metabolism, and lipid synthesis through 
the AMPK-PPARα-UCP2 pathway.111–113 Moreover, activation 
of the PPARα-UCP2-AMPK pathway in macrophages inhib-
ited macrophage activation to reduce inflammation and al-
leviate fibrosis progression.114 SLC25A9/UCP3 was primar-
ily expressed in skeletal muscle and prevented lipid-induced 
mitochondrial damage by promoting FA export from mito-
chondria. Moderate overexpression of UCP3 could increase 
mitochondrial oxygen consumption and FAO in muscle and 
liver.115,116 Polymorphisms in UCP3 were associated with 
NASH and IR.117,118 A progressive increase in IR, accom-
panied by a gradual decrease in UCP3 levels, has been ob-
served in HFD-fed mice. Meanwhile, Akt/PKB and AMPK sign-
aling were blunted, and FAO was decreased in gastrocnemius 
muscle, similar changes are seen in alcohol-induced IR.119,120 
Thus, UCP3 may delay the progression of hepatic steatosis 
by regulating fatty acid metabolism and alleviating IR.

SLC25A1 and SLC25A10 were involved in the develop-
ment of hepatic steatosis and fibrosis through the transport 
of carboxylic acids. SLC25A1 was responsible for transport-
ing mitochondrial citrate into the cytoplasm and was highly 
expressed in the livers of NASH patients. SLC25A1 inhibition 
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decreased citrate transport and inhibited glycolysis, leading 
to decreased pyruvate levels. These effects worked together 
to reduce DNL. It also inhibited the M1 pro-inflammatory 
pathway as well as the expression of pro-inflammatory and 
pro-fibrotic genes.121 Furthermore, SLC25A1 inhibition al-
leviated HFD-induced hepatic steatosis and IR by altering 
hepatic protein acetylation patterns. Specifically, under HFD 
conditions, SLC25A1 inhibition promoted FAO by deacetylat-
ing carnitine palmitoyltransferase 1A and reduced glucose 
oxidative catabolism by triggering the acetylation-induced 
inactivation of pyruvate dehydrogenase E1α, which caused 
enhanced glucose uptake and storage in the liver, and acti-
vated the SIRT1/PGC1α pathway to enhance oxidative phos-
phorylation for energy production.186 SLC25A10, also known 
as the mitochondrial dicarboxylate carrier (mDIC), was a car-
rier of dicarboxylic acids on the mitochondrial membrane, 
predominantly expressed in white adipose tissue (WAT).187 
SLC25A10 mRNA levels in human WAT correlated positively 
with insulin sensitivity and negatively with intrahepatic TAG 
levels.122 Mechanistically, mDIC mediated the influx of suc-
cinate into adipocytes, which enhanced succinate receptor 
1 to inhibit lipolysis by dampening the cAMP-phosphorylat-
ed hormone-sensitive lipase pathway. mDIC deficiency led 
to increased lipolysis in adipocytes of HFD mice, providing 
non-esterified fatty acids for intrahepatic lipid synthesis and 
promoting DNL.123 However, since mDIC also played a crucial 
role in providing malate for citrate transport required for fatty 
acid synthesis its deletion in hepatocytes may downregulate 
the lipogenic pathway.124 This suggests that mDIC performs 
distinct functions in hepatocytes and adipocytes, and its ef-
fects on hepatic steatosis may be dominated by its effects in 
adipocytes.

SLC25A3 and SLC25A28 were implicated in the develop-
ment of hepatic steatosis and fibrosis by modulating intracel-
lular copper and iron levels, respectively, with low copper 
and iron being common risk factors for NAFLD. SLC25A3, 
a mitochondrial inner membrane carrier for inorganic phos-
phate (Pi) and copper, was observed to be downregulated in 
the livers of HFD-fed mice. This reduction in SLC25A3 ex-
pression impaired the electron transport chain by decreas-
ing copper in mitochondria, leading to electron leakage and 
increased mitochondrial ROS production. Ultimately, this 
rendered hepatocytes more susceptible to oxidative stress 
and potentially facilitated NASH progression.188 SLC25A28/
Mitoferrin2 was a mitochondrial iron-translocation protein es-
sential for hepatocyte regeneration.189 Mitoferrin2-deficient 
female mice exhibited elevated hepatic TAG levels and al-
tered hepatic lipid metabolism when exposed to a low-iron 
diet, suggesting that Mitoferrin2-mediated intrahepatic iron 
homeostasis plays an important role in lipid metabolism.125 
Additionally, Mitoferrin2-mediated iron transfer was implicat-
ed in the pathogenesis of fibrosis by influencing ferroptosis. 
The elevated expression of bromodomain-containing protein 
7 in response to ferroptosis inducers promoted mitochondrial 
translocation of p53 by directly binding to it, which interacted 
with SLC25A28 to form a complex that enhanced SLC25A28 
activity. This resulted in the aberrant accumulation of redox-
activated iron and hyperfunction of the electron transport 
chain, ultimately promoting ferroptosis in HSCs.126

SLC25A5 and SLC25A47 were involved in the develop-
ment of hepatic steatosis and fibrosis through nucleotide 
transport. SLC25A5 is a mitochondrial ATP transporter pro-
tein that facilitates the exchange of adenosine diphosphate 
and ATP across the inner mitochondrial membrane. Liver-
specific SLC25A5 deficiency increased uncoupled respira-
tion and prevented the development of steatosis and IR in 
mice.127 Its role in alcohol-induced fatty liver disease was 

similar. Alcohol administration triggered global protein lysine 
β-hydroxybutyrylation (hereinafter referred to as Kbhb) in 
the liver. Two modifications of SLC25A5 Kbhb, mediated by 
3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, pre-
vented SLC25A5 degradation by ubiquitin proteases. The 
stabilization of SLC25A5 facilitated steatosis via the MAPK/
Erk/PPARγ axis under chronic alcohol exposure.128 SLC25A47 
was a hepatocyte-specific mitochondrial carrier that trans-
ported NAD+. SLC25A47 mediated the increase of mitochon-
drial NAD+, activating sirtuin 3 (SIRT3) protein activity, and 
inhibited lipid accumulation via the SIRT3-AMPKα-SREBPs 
pathway.129 Upon activation of SIRT3, hepatocyte mitochon-
drial oxidative stress was reduced, and mitochondrial dys-
function was alleviated, which reduced hepatocyte apoptosis 
and alleviated hepatic fibrosis.130 Similarly, the deletion of 
SLC25A47 impaired hepatocyte mitochondrial function due 
to an inability of the mitochondria to cope with the additional 
metabolic stress induced by high-fat/high-sucrose feeding. 
This ultimately led to the development of NASH.131

The loss of function of SLC25A46, an outer mitochondrial 
membrane protein, led to alterations in mitochondrial lipid 
composition and may play a role in membrane remodeling as-
sociated with mitochondrial fusion and fission.190 SLC25A46 
was involved in endoplasmic reticulum-mitochondrial con-
tacts through the ECM2-SLC25A46-Mic19 axis. Abnormali-
ties in this pathway resulted in impaired mitochondrial phos-
pholipid metabolism, disrupted mitochondrial membrane 
organization, and affected hepatic mitochondrial fatty acid 
β-oxidation and lipid metabolism, potentially contributing to 
the development of hepatic fibrosis.132

SLC27/29/31/35/37/38/39/43
The FATP family, encoded by SLC27, is responsible for fatty 
acid transport, with some members also exhibiting acyl-CoA 
synthase activity, playing important roles in metabolic dis-
eases.191 SLC27A1/Fatty acid transport protein 1 is mainly 
expressed in adipocytes and skeletal muscle tissues, and 
its loss of function leads to the redistribution of lipids from 
adipose and muscle tissues to the liver.133 SLC27A2/Fatty 
acid transport protein 2 (FATP2) is mainly expressed in the 
liver and can reduce hepatic lipid accumulation when inhib-
ited. Transmembrane 4 L six family member 5, murine CYP 
(Cyp2c44), and Forkhead box protein A1 all mitigate he-
patic lipid accumulation by downregulating FATP2 expres-
sion or interfering with FATP2 translocation.134–136 Hepatitis 
B virus X and N-Acetyltransferase-like protein 10 can pro-
mote hepatic lipid accumulation by upregulating FATP2 ex-
pression or promoting FATP2 stability.137,138 SLC27A4/Fatty 
acid transport protein 4 (FATP4) is widely distributed in vivo, 
functioning as an acyl-CoA synthetase on organelle mem-
branes but is relatively poorly expressed in hepatocytes.192 
FATP4 may play a key role in mitochondrial β-oxidation and 
mediates the transport of fatty acids from lipid droplets to 
mitochondria for β-oxidation during starvation in myofibro-
blasts. Conversely, the deletion of FATP4 in hepatocytes de-
creases β-oxidation and increases fatty acid synthesis and 
uptake, ultimately elevating hepatocyte and plasma TAG 
levels.139,140 Another study found that FATP4 expression 
was elevated in the livers of NASH mice. Additionally, cells 
that overexpress FATP4 can increase acyl-CoA synthetase 
activity in response to palmitate stimulation for β-oxidation, 
elongation, and desaturation of FAs, as well as synthesis of 
neutral lipids, sphingolipids, and phospholipids. This results 
in hepatocellular steatosis, endoplasmic reticulum structural 
damage due to phospholipid composition changes, and acti-
vation of the Bax and JNK/PUMA pathways, which increases 
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TAG levels in hepatocytes and plasma. Furthermore, down-
regulation of FATP4 in hepatocytes and adipocytes mediates 
the protective effects of vitamin D and exercise on obe-
sity and HFD-induced hepatic steatosis.141,142 FATP4 influ-
ences both lipid synthesis and catabolism, with its stable 
expression being crucial for hepatocyte lipid homeostasis. 
Additionally, the deletion of FATP4 in bone marrow-derived 
macrophages and Kupffer cells leads to an increased pro-
inflammatory response and induces hepatic fibrosis in HFD-
fed female mutants.143 SLC27A5/Fatty acid transport protein 
5 (FATP5) is associated with BA homeostasis in the liver in 
addition to fatty acid transport.193 Knockdown of FATP5 can 
reverse NAFLD and significantly improve systemic glucose 
homeostasis.144 However, reduced hepatic FATP5 expression 
in NAFLD patients is associated with histologic progression 
and may contribute to lipid reduction during the progres-
sion of NASH to cirrhosis.194 The possible explanation is that 
downregulation of FATP5 is mediated by the RUNX family of 
transcriptional repressors 2, which increases the accumu-
lation of hepatic unconjugated bile acids, especially cholic 
acid, leading to HSC activation through upregulation of the 
expression of early growth response protein 3.145

SLC31A1 and SLC39A14 influence the development 
of hepatic steatosis and fibrosis by regulating intracellular 
metal ion levels. SLC31A1 is a copper-specific transport pro-
tein located in the parietal membrane of enterocytes. High-
fat-sugar diet inhibited SLC31A1-mediated copper uptake 
through the intestinal epithelium, leading to blood copper 
deficiency followed by hepatic copper reduction. This reduc-
tion decreased β-oxidation, increased DNL, and contributed 
to IR. Additionally, hepatic iron overload caused by cop-
per deficiency led to mitochondrial dysfunction and inhibi-
tion of antioxidant defenses.146,147 Blood copper levels also 
predicted the risk of cardiovascular diseases in NAFLD pa-
tients.195 SLC39A14 (also known as Zrt- and Irt-like protein 
14, or ZIP14) is a zinc transporter protein highly expressed 
in both the intestine and liver. It plays a critical role in reg-
ulating manganese and iron homeostasis.196,197 ZIP14 is 
upregulated during endoplasmic reticulum stress, where it 
reduces endoplasmic reticulum stress-induced hepatic ste-
atosis and apoptosis. Mechanistically, the unfolded protein 
response activates transcription factors ATF4 and ATF6, lead-
ing to upregulation of ZIP14 and subsequent zinc influx. This 
process decreases protein-tyrosine phosphatase 1B activity, 
which affects the pro-apoptotic p-eIF2α/ATF4/CHOP pathway 
and DNL, offering protection against endoplasmic reticulum 
stress.148 ZIP14-mediated zinc influx also directly influences 
the activity of PPARγ and insulin receptors, thereby regulat-
ing hepatic lipogenesis.149,150 In addition, ZIP4 may be less 
induced by long-term HFD, leading to iron deficiency and 
thus lipid accumulation in hepatocytes.151 Low zinc levels 
were associated with an increased risk of hepatic fibrosis, 
and consistent with this, ZnCl2 treatment could ameliorate 
hepatic fibrosis by increasing intracellular zinc levels through 
metal-regulatory transcription factor 1-mediated upregula-
tion of ZIP14 and inhibition of histone deacetylase 4 in com-
bination with ZIP14.152

Other SLC family members may also play a role in hepatic 
steatosis and fibrosis, although reports on them are fewer. 
SLC29A1 is a nucleoside transporter protein, and miR-126b 
mimics may alleviate hepatic fibrosis in rats by inhibiting the 
activation of the RhoA/ROCK-1 signaling pathway through 
decreased expression of SLC29A1.153 SLC35A1 encoded a 
cytidine-5′-monophosphate-sialic acid transporter that me-
diates the transport of cytidine-5′-monophosphate-sialic acid 
between the cytoplasm and the Golgi apparatus for protein 
sialylation. A deficiency in SLC35A1 in liver sinusoidal en-

dothelial cells (LSECs) results in excessive neonatal hepatic 
lipid deposition and severe hepatic injury. In SLC35A1-defi-
cient mice, vascular endothelial growth factor receptor 2 in 
LSECs was desialylated, resulting in enhanced vascular en-
dothelial growth factor receptor 2 signaling, which disrupted 
LSEC recognition and hepatic compartmentalization. This 
suggests that SLC35A1 plays an important role in maintain-
ing hepatic lipid homeostasis in neonatal mice.154 SLC38A1 
mediates glutamine uptake, and upregulation of HIF-2α in-
hibited Yes-associated protein phosphorylation in HSCs, lead-
ing to the overexpression of enzymes related to glutamine 
metabolism, including SLC38A1. This enhanced glutamine 
metabolism and activated HSCs.19,155 Although the expres-
sion level of SLC38A1 in human fibrotic liver remains unclear, 
it is reasonable to speculate that overexpression of SLC38A1 
promoting glutamine uptake might be beneficial for fibro-
sis progression. Polymorphisms in SLC37A3, SLC38A8, and 
SLC39A8 have been implicated in NAFLD progression, but 
their specific regulatory mechanisms in fibrosis progression 
have yet to be fully clarified.198–200 SLC43A3 seems to regu-
late the flux of FAs in adipocytes, functioning as a positive 
regulator of FA efflux and a negative regulator of FA uptake. 
Therefore, overexpression of SLC43A3 may be beneficial for 
FA clearance in hepatocytes.156

Future perspectives
As the structure and function of SLC family molecules con-
tinue to be elucidated, an increasing number of members 
have been identified as being involved in the development 
of hepatic steatosis and fibrosis. Among these, the SLC2, 
SLC5, SLC7, and SLC25 families are better understood and 
have been shown to influence hepatocyte and HSC function 
by mediating saccharide or FA transport and regulating fer-
roptosis or mitochondrial function. Other SLC family mem-
bers are also implicated in the development of steatosis or 
fibrosis through the transport of BAs, metal ions, serotonin, 
amino acids, carboxylic acids, and nucleotides. However, the 
specific regulatory mechanisms of these molecules remain 
to be fully elucidated. Additionally, certain transporters, 
such as GLUT2, SERT, mDIC, and MCT1, may exhibit distinct 
patterns depending on the conditions, leading to seemingly 
contradictory roles in hepatic steatosis and fibrosis. It is 
likely that these molecules may have different functions at 
various sites or in different environments. Consequently, it 
is essential to elucidate the regulatory conditions governing 
these diverse functions. In future research, we anticipate 
utilizing a greater number of preclinical models, including 
organoids, which more closely resemble the actual human 
environment. These models can simulate the structure and 
function of these molecules in various states and investigate 
potential mechanisms, such as epigenetic modifications and 
stereostructural changes in different environments. The SLC 
family has considerable potential as therapeutic targets for 
NAFLD and NASH. However, purifying SLC molecules is dif-
ficult due to their structural complexity. Moreover, the fact 
that their intracellular and extracellular domains are regu-
lated by different post-translational modifications adds to 
the challenge. Additionally, the structure of SLC molecules 
is influenced by the surrounding cellular environment. Thus, 
studies on the structure of SLC molecules must integrate 
an understanding of the cellular and organismal context. 
Furthermore, more research should focus on the expression 
and modification of these molecules in human samples to 
confirm their expression in extrahepatic tissues and ensure 
that targeted drugs do not affect other organs. It is an-
ticipated that the utilization of advanced bioinformatics and 
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imaging techniques, coupled with increased interdiscipli-
nary collaboration, will facilitate a more comprehensive un-
derstanding of SLC molecules. Despite numerous obstacles 
to clinical implementation, some drugs, such as SGLT2 in-
hibitors and ASBT inhibitors, have already been developed. 
SGLT2 inhibitors have shown significant potential in inhibit-
ing the progression of NAFLD and NASH.17,42,166,201 How-
ever, clinical studies of SGLT2 inhibitors have been limited 
to patients with diabetes and NAFLD or NASH, necessitating 
large, high-quality, randomized controlled trials to explore 
their effectiveness in all patients with NAFLD or NASH. Addi-
tionally, the current maximum follow-up period of five years 
highlights the need for further investigation into the long-
term effects of SGLT2 inhibitors, as well as the optimal dose 
and duration for treating steatohepatitis in diverse popula-
tions or in patients with varying degrees of severity. There is 

also the possibility that SGLT2 inhibitors could be employed 
in the treatment of cirrhosis. ASBT inhibitors have also been 
developed to alleviate steatohepatitis, but their efficacy has 
been limited.

Conclusions

In summary, SLC family molecules play a crucial role in the 
development of hepatic steatosis and fibrosis (Figs. 1 and 2). 
Therefore, further research into the underlying mechanisms 
and corresponding SLC molecular structures is necessary to 
develop safe and effective targeted therapies.
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